Slower skeletal muscle phenotypes are critical for constitutive expression of Hsp70 in overloaded rat plantaris muscle.

نویسندگان

  • David E T O'Neill
  • F Kris Aubrey
  • David A Zeldin
  • Robin N Michel
  • Earl G Noble
چکیده

Heat shock protein 72 (Hsp70) is constitutively expressed in rat hindlimb muscles, reportedly in proportion to their content of type I myosin heavy chain. This distribution pattern has been suggested to result from the higher recruitment and activity of such muscles and/or a specific relationship between myosin phenotype and Hsp70 content. To differentiate between these possibilities, the fiber-specific distribution of Hsp70 was examined in male Sprague-Dawley rat plantaris under control conditions, following a fast-to-slow phenotypic shift in response to surgically induced overload (O) and in response to O when the phenotypic shift was prevented by 3,5,3'-triiodo-dl-thyronine administration. Constitutive expression of Hsp70 was restricted to type I and IIa fibers in plantaris from control rats, and this fiber-specific pattern of expression was maintained following O of up to 28 days, although Hsp70 content in the O muscle doubled. When O (for 40 days) of the plantaris was combined with 3,5,3'-triiodo-dl-thyronine administration, despite typical hypertrophy in the overloaded plantaris, prevention of the normal phenotypic transformation also blocked the increased expression of Hsp70 observed in euthyroid controls. Collectively, these data suggest that chronic changes in constitutive expression of Hsp70 with altered contractile activity appear critically dependent on fast-to-slow phenotypic remodeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Spinal Nerve Ligation after Endurance Training on the Gene Expression of MST1 and MAFbx in Plantaris Muscle of Male Wistar Rats

Background and purpose: Reduction of muscle mass occurs in some models of muscle atrophy during mechanical unloading status and MST1 and MAFbx genes are believed to have a role. In the present study, the effect of reduced physical activity in the form of spinal nerve ligation (SNL) after a period of endurance training (ET) on the expression of MST1 and MAFbx genes were examined in the rat plant...

متن کامل

Prolonged exercise training induces long-term enhancement of HSP70 expression in rat plantaris muscle.

Skeletal muscle may develop adaptive molecular chaperone enhancements as a potential defense system through repeated daily exercise stimulation. The present study investigated whether prolonged exercise training alters the expression of molecular chaperone proteins for the long term in skeletal muscle. Mature male Wistar rats were subjected for 8 wk to either a single bout of acute intermittent...

متن کامل

Contribution of the calcineurin signaling pathway to overload-induced skeletal muscle fiber-type transition.

Skeletal muscle is highly adaptable, being capable of undergoing changes in its structural and functional properties in response to physiological stimuli. The fast-to-slow muscle fiber-type transition is evoked by increased motor nerve activity. Recently, the calcineurin (CaN) signaling pathway has been implicated in the transcriptional regulation of slow muscle fiber genes. Here we investigate...

متن کامل

The Effect of Resistance and Progressive Training on HSP 70 and Glucose

Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...

متن کامل

The Effect of Resistance and Progressive Training on HSP 70 and Glucose

Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 2006